Evolutionary analysis of Human Respiratory Syncytial Virus in Myanmar, 2015-2018

Wint Wint Phyu1, Khin Thuzar Htwe4, Clyde deapat5, Reiko Saito1, Irina Chon1,2, Hidekazu Osada1,2, Hisami watanabe2, Htay Htay Tin3

1*Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Infectious Diseases Research Center (IDRC) of Niigata University in Myanmar, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; National Health Laboratory, Department of Medical Services, Ministry of Health and Sports, Myanmar; NUNiversity of Medicine, Mandalay, Myanmar; 2Department of Virology, Graduate School of Medicine, Tohoku University, Japan

Background

- Genetic evolution of Human Respiratory syncytial virus (HRSV), especially G gene encoding attachment protein, plays a crucial biological role for faster viral replication, which may elicit strong resistance to herd immunity.
- In Myanmar, there are no previous studies done to characterize genotypes and to assess evolution of HRSV.

Aim

- To clarify the clinical manifestations of HRSV infections in outpatients, and seasonality of HRSV in Myanmar.
- To assess the evolution of HRSV in Myanmar by studying genetic variations of the 2nd hypervariable region (HVR) of the G gene of the virus.

Materials & Methods

- Collection of nasal swabs from patients suspected of HRSV infection.
- Rapid diagnostic test: Multiplex PCR using primers targeting the G and F genes.
- Phylogenetic analysis using Maximum likelihood method.
- BEAST software version 1.8.4.

- Table 1: Positivity of HRSV subgroups by year in Myanmar, 2015-2018

<table>
<thead>
<tr>
<th>Year</th>
<th>HRSV-A Positive by RT-PCR</th>
<th>HRSV-B Positive by RT-PCR</th>
<th>Total (n=140)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>35 (100)</td>
<td>60 (100)</td>
<td>195 (100)</td>
</tr>
<tr>
<td>2016</td>
<td>60 (100)</td>
<td>30 (100)</td>
<td>90 (100)</td>
</tr>
<tr>
<td>2017</td>
<td>38 (100)</td>
<td>52 (100)</td>
<td>90 (100)</td>
</tr>
<tr>
<td>2018</td>
<td>28 (100)</td>
<td>160 (100)</td>
<td>188 (100)</td>
</tr>
<tr>
<td>Total</td>
<td>195 (100)</td>
<td>188 (100)</td>
<td>383 (100)</td>
</tr>
</tbody>
</table>

- Table 2: Base line characteristics of HRSV-A & HRSV-B subgroups in Myanmar, 2015-2018

- Figure 2: Phylogenetic trees of G gene of HRSV-A and HRSV-B strains from Myanmar and reference strains, 2015-2018

- Figure 3: Time scaled phylogenetic tree of ONI of HRSV-A and HRSV-B using Bayesian Markov Chain Monte Carlo (MCMC) method

- Figure 4: Effective population size of HRSV-A and HRSV-B strains in Myanmar, 2015-2018

Summary

- During the study period, 464 (24.5%) out of 1837 nasopharyngeal swabs were identified by RT-PCR. Out of these, 246 samples were positive by real time PCR, 84 (34.6%) were HRSV A, and 162 (65.4%) were HRSV B and 1 (0.8%) were mixed infection.
- HRSV-A was predominant in 2016. However, HRSV-B became predominant in two consecutive years of 2017 and 2018.
- Higher proportion rate of HRSV-A cases were found in 1 year old and above than children less than 1 year old (76.53 vs 29.53).
- Cough and rhinitis were the main symptoms, observed in 89.0% and 70.9% of HRSV infected children.
- The main distribution of HRSV-A positive samples showed that HRSV-A epidemic in Myanmar occurred between July through October and peaked during August and September.

- Phylogenetic analysis showed that HRSV-ONI strain in HRSV-A and BA9 in HRSV-B type is likely to circulate during 2015-2018 in Myanmar.

- According to Bayesian Markov Chain Monte Carlo (MCMC) method by using Beast software, the time to the most recent common ancestor (MRCA) was estimated since 1993 (95% HPD: 1935-2010) for HRSV-A and since 1999 (95% HPD: 2000-2010) for HRSV-B.

- The mean evolutionary rate for HRSV-A (1.23 x 10^-7 substitutions/year; 95% HPD: 1.83 x 10^-7 to 1.5 x 10^-7) and HRSV-B (2.31 x 10^-3 to 2.5 x 10^-3) were highly faster than HRSV-A (1.9 x 10^-3 substitutions/year; 95% HPD: 3.5 x 10^-3 to 2.6 x 10^-3).

- The estimated effective population size (diversity) of HRSV-A increased from 2015 to 2016, whereas, ONI was the dominant genotype and declined in the middle of 2018. In contrast, the diversity of HRSV-B was constant in 2015-2016, and increased in the middle of 2017.

Conflict of Interest

We have no conflict of interest.

Acknowledgement

We thank Dr. Osamu Take To in the National Influenza Centre, Virology Section of National Health Laboratory, Myanmar; Dr. Tatsuo Urita, Virology Section of National Health Laboratory, Myanmar; Dr. Tatsuro Nakanishi, Deputy Director of Pathology Section of National Health Laboratory, Myanmar for their contributions to the success of this project. We also thank Dr. Fumihiko Ogata in Tohoku Medical University, and Dr. Atsushi Hattori, Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Aichi Himesh and Shinzo funds. This study was supported by the International Development Strategy Program for Infectious Diseases Research (J20302) of AID (Japan Medical Research and Development Organization).