

VIRGIL Antiviral Course 3-6 October 2006

Micro-plaque assay of influenza virus sensitivity to neuraminidase inhibitors

Mikhail Matrosovich and Tatyana Matrosovich

Influenza virus receptors: sialic acids

HA binds to sialic acid (Sia)

Functions of influenza virus neuraminidase (NA)

Neu5Ac

Early in infection:

Late in infection:

Destroys mucin inhibitors and decoy receptors

Promotes virus entry into cell

Removes receptors from virus progeny and cell surface

Promotes virus release and spread

Inhibition of NA impaires virus release and spread

Normal virus release (top) and release in the presence of NA inhibitor (bottom) *From Gubareva et al.*, 2000

Plaque reduction assay

NA inhibitor decreases size of plaques produced by influenza virus *From Bantia et al., 1998*

Pitfalls of plaque assays

1. Assays in <u>MDCK cells</u> do not correlate with virus sensitivity to NA inhibitors in vivo

2. Plaque assays under agar overlays are cumbersome and cannot be performed in 96-well plates

New assay solves these problems

I. Viral sensitivity to NAI in MDCK cells do not correlate with sensitivity in vivo

Viruses with drugsensitive NA can be resistant

Viruses with drug-resistant mutations in HA and NA can display sensitivity

Laboratory cells do not mimic receptors in human airway epithelium

How to model influenza virus receptors of human airway tissues in a laboratory cell line?

Cell line with high concentration of 6-linked sialic acids is required

Preparation of a cell line for resistance assay: overexpression of SIAT1 in MDCK cells

SIAT1 (beta-galactoside a2,6-sialyltransferase) generates 6linked sialic acid receptors recognized by human influenza viruses

Influenza viruses are more sensitive to NA inhibitor in MDCK-SIAT1 cells than in MDCK cells: A/Sydney/5/97 (H3N2)

0 0.001 0.01 0.1 1 10 μM oseltamivir carboxylate

Viral plaque assays

General cellular stain detects destroyed cells

Immuno-staining detects infected cells

Under liquid medium, the plaques are not localised and cannot be counted

Known overlays

- Gels (agar, agarose)

Time and labor consuming; heated agar can damage cells; cannot be used in 96-well plates

 "Semi-liquid" overlays (solutions of methylcellulose, tragacanth gum, etc)
 High viscousity --> particularly difficult to handle in microplate format

Our approach: Thixotropic gels

The viscosity decreases as shear rate increases (Examples: yogurt, ketchup)

AvicelTM (FMC BioPolymer)

- Microcrystalline water insoluble cellulose

Particles (~0,2 uM)
 form a network of weak
 hydrogen bonds that
 account for thixotropic
 properties of Avicel
 dispersions

- Low viscosity (~ 100-200 mPa.s at 1,5% Compare to 3000 mPa.s for 1,5% solution of methylcellulose)

AvicelTM (FMC BioPolymer)

Standardised commercial product: Widely used as vehicle for the preparation of pharmaceutical suspensions and emulsions

M.Matrosovich

Plaque assays under Avicel vs agar influenza virus A/Memphis/14/96 (H1N1)

- Plaques are bigger; size can be controlled
- As low as 0.3% (!) of Avicel is still sufficient to localize plaques
- More plaques under Avicel than under agar

Avicel vs. methylcellulose, MDCK-SIAT1 cells

Plaque formation by different human and avian viruses

Philipps

Assay variants in 96-well plate

Viral inoculum was removed before adding Avicel overlay

Avicel overlay was added w/o removing inoculum

No need to remove viral inoculum: easier to perform, lower chances of cross-contamination

Detecting drug-resistant viruses MDCK-SIAT1, 96-well format

The viruses were kindly provided by Robert Webster

Step 1. Seed MDCK-SIAT1 cells in 96-well plate

Step 2.

Wash the cells 3-4 times with serum-free medium

Step 3. Add 10-fold serial dilutions of the drug, 50 ul/well

Step 4. Add 3-fold serial dilutions of the virus, 50 ul/well

Step 5.

Mix, incubate 1-2 h for initiation of infection

M.Matrosovich

Step 6. Add Avicel overlay medium, 100 ul/well

In the Lord 010 VIRUS -6 1000 Dilution 1 6 1 Cont Cont Ter- Core ALC: NO. 0 Contraction of 1 ALC: NO. **Dilution 3** (interior) 2.2 100.00 6563 COMPANY. 100015 1000 12 60 100.17 **Dilution 9** -0 3 - Party and Contraction of **Dilution 27** 2 HOCK (H) 05 101101 100.00

Drug

Step 7. Incubate for 20-48 h to allow formation of plaques

un [e] 11110 VIRUS 6 1002 Dilution 1 6 1 Cont Standy The ? ALC: NO. Contra la 0 1 100 25.23 ALC: NO. **Dilution 3** (interior) 2.2 1000 1000 State 1 (compile 100.17 **Dilution 9** -5.0 I THE REAL Store La 30.12 **Dilution 27** HONG (H) HIGH 05 TEL SUE

Step 8.

Fix and immunostain to visualise plaques:

- remove overlay medium, incubate with 4% paraformaldehyde,
 30 min at 4 oC
- permeabilize the cells with 0.5% Triton-X-100, 10 min
- incubate with primary antibodies (anti-NP-A or -NP-B), 1 h
- incubate with HRP-labeled secondary antibodies, 1 h
- incubate with precipitate-forming peroxidase substrate,
 30 min
- let dry and analyse

Drug concentration, uM

M.Matrosovich

Post-treatment virus is NAI-resistent

Universität Marburg

