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ABSTRACT

Viral and bacterial respiratory tract infections are a leading cause of

morbidity and mortality worldwide, despite the development of

vaccines and potent antibiotics. Frequently, viruses and bacteria can

co-infect the same host, resulting in heightened pathology and

severity of illness compared to single infections. Bacterial

superinfections have been a significant cause of death during every

influenza pandemic, including the 2009 H1N1 pandemic. This

review will analyze the epidemiology and global impact of viral and

bacterial co-infections of the respiratory tract, with an emphasis on

bacterial infections following influenza. We will next examine the

mechanisms by which viral infections enhance the acquisition and

severity of bacterial infections. Finally, we will discuss current

management strategies for diagnosing and treating patients with

suspected or confirmed viral-bacterial infections of the respiratory

tract. Further investigation into the interactions between viral and

bacterial infections is necessary for developing new therapeutic

approaches aimed at mitigating the severity of co-infections.

Keywords bacterial pneumonia, influenza, polymicrobial infec-

tions, respiratory viral infection.
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Introduction

Influenza and pneumonia are the leading cause of death

from an infectious disease in the United States and

worldwide.1 They consistently rank among the top 10 causes

of death in the United States, resulting in approximately

50 000 deaths each year.2 Worldwide, an estimated 3�5
million people succumb to these infections annually, more

than HIV/AIDS and tuberculosis combined.1 Because pin-

pointing the precise microbiologic cause of a respiratory

infection is impractical or infeasible in many cases, it is often

presumed that pneumonias are caused by either bacteria or

respiratory viruses like influenza, and when in actuality,

many lower respiratory tract infections are caused by

multiple pathogens acting in synergy. Notably, bacterial

pneumonias have been long appreciated to be a major

complication of influenza infections, even after the advent of

antibiotics. During the 2009 pandemic, bacteria pneumonias

were present in 25–30% of severe cases requiring hospital-

ization, and up to 50% in small autopsy series, thus

demonstrating the continued public health significance of

influenza–bacterial co-infections despite the availability of

vaccines and potent antibiotics.3–7

In this review, I will discuss the types of co-infections that

are often encountered in clinical practice. The focus will be

primarily on co-infections of the respiratory tract involving

acute respiratory viruses and community-acquired bacterial

pathogens, particularly secondary bacterial pneumonia

following influenza. First, I will discuss the epidemiology of

co-infections. This will be followed by a brief overview of

findings from research into the basic mechanisms underlying

the pathogenesis of viral–bacterial co-infections. Finally, I
will present recommendations on how these findings can be

utilized clinically, as co-infections clearly post a therapeutic

challenging for clinicians and public health officials alike.

What types of co-infections are
encountered in practice?

Viral–bacterial co-infections are regarded to be a common

and clinically significant problem, although the precise

incidence is difficult to determine for a variety of reasons.

First, many cases of viral–bacterial co-infections go unde-

tected, particularly in the outpatient setting. A common

scenario is a patient who presents to a clinic with a history of

a (presumably viral) upper respiratory infection (e.g., nasal

congestion, rhinorrhea, sore throat) which had improved

initially, but then worsened a few days later and now has

complaints that are suspicious for bacterial infection (e.g.,

productive cough, sinus pain, fevers). In these cases, an

earnest search for the microbiologic etiologies is often not

warranted. Second, even when further testing is performed,

the diagnostic yield is limited by the sensitivity of currently

available microbiologic tests and the ability to obtain certain

types of clinical specimens (e.g., sputum, bronchoalveolar

lavage). Furthermore, the early administration of antibiotics,
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while appropriate for clinical management of acutely ill

individuals, can considerably diminish the yield of bacterial

cultures. For these reasons, interest has turned to adjunctive

molecular testing methods, such as nucleic acid amplification

tests (NAATs) [e.g., viral respiratory polymerase chain

reaction (PCR) panels] or direct antigen detection methods

(e.g., for Streptococcus pneumoniae, Legionella pneumophila,

influenza, etc.), which can improve the overall diagnostic

yield but lack specificity. Thus, unless a study was performed

as part of a large clinical trial with comprehensive protocols

for diagnostic testing or the medical facility has strict

diagnostic algorithms in place for workup of pneumonia,

the true incidence of viral–bacterial co-infections is difficult
to determine and likely underestimated.

Despite these issues, both upper and lower respiratory

tract illnesses are frequent complications of viral infections.

Acute otitis media in pediatric populations are often

observed during viral outbreaks, most commonly respiratory

syncytial virus (RSV), adenovirus, human rhinovirus (HRV),

and coronavirus.8–11 A recently identified virus isolated from

the human respiratory tract, human bocavirus,12 has

emerged as a potentially important copathogen in acute

otitis.13 It is believed that changes in the upper respiratory

tract induced by antecedent viral infections are what facilitate

bacterial invasion into the middle ear. The bacteria, which

most frequently cause otitis, Streptococcus pneumoniae,

Moraxella catarrhalis, and non-typeable Hemophilus influen-

zae, are normal members of the nasopharyngeal flora; viral

infections appear to enable these bacteria to enter the middle

ear–and more importantly, flourish–resulting in disease.14

Substantial variation exists in the patterns of viral–bacterial
co-infections reported, depending on the patient population

(e.g., location), prevalence of vaccination against pneumo-

coccus, and method of microbiologic detection (e.g., middle

ear aspirate, nasopharyngeal swabs) The viral–bacterial
combinations most strongly associated with acute otitis

media include rhinovirus or RSV with M. catarrhalis,

S. pneumoniae, or H influenzae;10,13,15,16 however, this may

also be attributable to the fact the RSV and rhinoviral

infections are very common in the pediatric population.

Pneumonia and other lower respiratory tract infections

follow a pattern similar to otitis, in that increased rates of

pneumonia appear to coincide with the time periods when

respiratory viruses are more prevalent, particularly influenza

and RSV.17,18 The association between influenza and bacte-

rial pneumonia has long been recognized.19 During the late

1800s and early 1900s, the bacterium now known as

H. influenzae was so commonly isolated from patients with

influenza infection that it was believed to be the etiologic

agent causing the 1918–1919 pandemic, since at that time,

viruses had barely been discovered. Retrospective analysis of

specimens from the 1918 influenza pandemic has revealed

that almost all fatal cases of pneumonia showed evidence of

bacterial infection.19 Since then, epidemiologic studies dur-

ing influenza pandemics and epidemics have demonstrated

incidence of pneumonias peaking concurrently with influ-

enza activity.20–22 Although evidence of bacterial infection

was not present in all cases, when bacterial cultures were

positive, it was almost always S. pneumoniae, S. aureus,

S. pyogenes, H. influenzae, or a combination of these bacte-

ria.21–24 Generally, secondary bacterial pneumonia compli-

cating influenza infection has been noted to be more severe

and prolonged, with higher mortality rates.22,23 However,

some influenza seasons are characterized by lower rates of

mortality demonstrating that viral factors (e.g., the influenza

neuraminidase) other currently unknown factors are respon-

sible for determining the incidence and severity of influenza–
bacterial co-infections.24–28 Influenza seasons where H3N2

influenza A dominate appear to be weakly associated with

higher rates of invasive pneumococcal infections, which may

be attributable to the higher neuraminidase activity of H3N2

strains compared with H1N1.27,29 Severe tracheobronchitis

caused by less virulent bacteria is another frequently noted

complication of influenza.22

Although the mortality rates from bacterial pneumonia

following influenza have significantly declined over the 20th

century for a variety of reasons, including changes in the

epidemiology of influenza viruses, development of antimi-

crobial therapies and vaccines, and improvements in sup-

portive care, bacterial pneumonias remain an important

contributor to the severity and lethality of influenza infec-

tions.28,30 During the recent 2009 H1N1 influenza pandemic,

bacterial pneumonia was present in 4–33% of hospitalized or

critically ill patients.3,7,31–34 Pathologic and microbiologic

analyses of fatal cases showed evidence of bacterial co-

infections ranging from 25% to 55%.4–6,35–37 Microbiology

data of secondary pneumonias from some of these studies are

presented in Table 1. Adding to the body of evidence for the

continued importance of influenza and bacterial co-infec-

tions are epidemiologic studies reporting excess hospitaliza-

tion rates for pneumococcal pneumonia during the 2009

H1N1 pandemic.38,39 A recent analysis of population-level

data in the United States during the 2009 pandemic and non-

pandemic years revealed a spike in invasive pneumococcal

pneumonia rates that coincided with influenza activity.40

Furthermore, a recent study conducted in the United States

of critically ill adults with 2009 influenza A infection

reported that patients with bacterial co-infections had 50%

higher mortality compared to patients without.7

The continued intense focus on influenza pandemics,

however, has somewhat obscured the fact that bacterial

pneumonias frequently complicate other respiratory viruses.

Invasive pneumococcal disease has been shown to be as

strongly correlated with RSV as influenza, particularly among

children.41–44 This may, in part, reflect the higher prevalence

of RSV infections among children with symptomatic lower
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respiratory infections.17,18 A number of studies have

described the patterns of viral–bacterial co-infections in

children hospitalized with community-acquired pneumonia

(CAP).45–48 In this population, rates of viral–bacterial co-
infections usually range from 15% to 30%, with higher rates

in the younger age groups (under 5 years of age). The most

common causes of CAP and acute lower respiratory tract

infections (LRTI) in children are S. pneumoniae,Mycoplasma

pneumoniae, Chlamydia pneumoniae, and respiratory viruses,

although in a large part of the world, H. influenzae and

S. aureus, remain important causes. Thus, the types of viral–
bacteria co-infections tend to vary by age group and

geography, but generally represent the pathogens most

commonly isolated in the study population (e.g.,

RSV-S. pneumoniae, rhinovirus–Mycoplasma) although

almost any combination of respiratory virus–bacterial path-
ogen has been observed. Although the widespread use of

vaccination againstH. influenzae type b has largely eliminated

this as a cause of CAP in the United States and other high-

income countries, this pathogen causes an estimated 4�1% of

severe and 15�7% of fatal cases of childhood pneumonias

worldwide.49 In adults, viral–bacterial co-infection rates

among patients with CAP are around 4–16% and are

associated with more severe disease.50,51 Influenza, rhinovirus,

RSV, and adenovirus are the most common viruses isolated

from patients with bacterial CAP.50 These epidemiologic

studies are a reminder that viruses are an important etiologic

agent of LRTIs, as well as a major cofactor in the development

of severe bacterial pneumonia. Hence, clinicians should

counsel patients who present with an initial respiratory viral

infection of the potential risk of developing secondary bacterial

infections, and to return if symptoms worsen. Conversely,

clinicians caring for patients who present with evidence of

severe lower respiratory tract infections when influenza is

known to be circulating should consider the epidemiology of

bacterial pathogens in this setting and consider empiric

treatment of both influenza and S. aureus in addition to the

usual regimen for community-acquired pneumonia.

How do viruses predispose individuals to
bacterial infections?

Evidence from our laboratory and many other investigators

have shown that enhanced susceptibility to bacterial patho-

gens (e.g., S. pneumoniae, S. aureus) peaks anywhere from 4

to 14 days after the primary influenza infection, but can

persist to 30 days and beyond.52–54 In a murine model of

sequential influenza and S. pneumoniae infection, we have

found that at 48 hours after bacterial challenge, influenza-

infected mice infected with only 200 colony-forming units

(CFU) of S. pneumoniae have comparable lung bacterial

burdens as non-influenza-infected animals challenged with

106 or 107 CFU, underscoring the profound immune defects

induced by influenza.(Jane Deng, unpublished observations)

A number of mechanisms likely contribute to the impair-

ments in host defense of the respiratory tract against bacteria

following viral infection. Much of our understanding has

arisen from studies conducted in animal models of sequential

infections by influenza and various bacterial pathogens and

has been comprehensively reviewed elsewhere;28,55 hence,

only the fundamental themes will be highlighted

here.(Table 2)

First, influenza and other respiratory viruses, due to their

tropism for epithelial cells, induce structural alterations in

the respiratory epithelium resulting in improved access to the

lower respiratory tract and persistence of upper airway

bacteria. Influenza viruses reduce human and animal nasal

and tracheal epithelial ciliary function.56,57 Influenza and

other respiratory viruses can induce death of epithelial cells,

leading to compromised barrier function of the airway, and

promote adhesion of bacteria through various mechanisms

including upregulation of surface receptors such as platelet-

activating factor receptor, which is involved in pneumococcal

invasion.52,58–61 However, the relative importance of this

mechanism is debated, given that most respiratory viruses do

not induce histologic evidence of significant epithelial

damage, and in vivo evidence has been inconclusive.52,61

Influenza viruses also enhance colonization and transmis-

sion of bacteria. Studies in mice demonstrate that the rate

and duration of pneumococcal colonization are enhanced by

influenza infection, which may be mediated by a type I

interferon-dependent mechanism.62–64 In addition, trans-

mission of bacteria to uninfected contacts was markedly

enhanced by influenza viral infection of donor and recipient

animals. Similar findings have been shown in ferrets.65

Viruses also have multiple effects on immune cells,

including innate leukocytes critical to antibacterial host

Table 2. Pathogenetic mechanisms of viral–bacterial co-infections.

Virus induced alteration in epithelial cells

Reduced ciliary function

Cell death/decreased epithelial barrier function

Upregulation of surface receptors for bacterial adhesion

Enhancement of bacterial colonization and transmission in vivo

Virus-mediated inhibition of innate immune cells (e.g., macrophages,

neutrophils)

Suppressed phagocytosis

Impaired microbial killing

Depressed leukocyte migration

Antiviral immune molecules – Type I and II interferons

Suppressed innate immunity

Inhibition of IL-17 responses

Dysregulated inflammation

Enhanced lung injury from increased inflammation

(e.g., chemokines)

Increased susceptibility from induction of

anti-inflammatory cytokines (e.g., Il-10)

Viral-bacterial interactions
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defense such as macrophages and neutrophils. Macrophages

are the main resident innate immune cell in the airspaces of

the lung and act as immune sentinels for bacterial infections.

Influenza, RSV, and other viruses have been shown to

suppress macrophage and monocyte chemotaxis and func-

tion, including phagocytosis and microbial killing.66–73

Similarly, RSV and influenza have been shown to depress

neutrophil migration, phagocytosis, and bactericidal activ-

ity.74–81 On a molecular level, one potential explanation for

some of these effects is sustained macrophage desensitization

to bacterial Toll-like receptor ligands following influenza and

RSV exposure, which results in decreased neutrophil recruit-

ment.82 Given the ample evidence that both cell types are

essential to the clearance of bacterial pathogens from the

lung, it is likely that influenza-induced suppression of

phagocytic cell populations plays a major role in governing

susceptibility to secondary bacterial infections.

Another emerging theme is that molecules important to

antiviral immunity may be detrimental when the influenza-

infected host encounters a secondary bacterial pathogen.

Activation of type I interferons (e.g., IFN a and b), type II

interferon (IFN-c), and innate immune receptors responsible

for recognizing influenza and other respiratory viruses [e.g.,

Toll-like receptor (TLR)-3, Retinoic acid inducible gene

(RIG)-I] have all been shown to mediate susceptibility to

secondary bacterial infections.53,54,83–85 Among the effects of

these immune pathways are impairment in phagocytic cell

function and recruitment, and inhibition of the IL-17

pathway possibly through IFN-induced suppression of

gamma-delta T cells. Although these mechanisms have

mainly been studied in the context of primary influenza

infection, we have found that simply inducing type I IFNs in

the lung by intranasal administration of poly I:C (ligand for

TLR3 and RIG-I) is sufficient to impair bacterial clearance of

S. pneumoniae and MRSA, suggesting that these mechanisms

may be operational in mediating susceptibility to bacteria

following infection by other respiratory viruses.85 In addi-

tion, this also raises the possibility that a host may experience

a mild or subclinical infection sufficient to induce an

antiviral immune response, thereby decreasing the threshold

of susceptibility to bacterial infection. These findings will

need to be confirmed in human studies, but should raise

some concern that efforts focused on augmenting antiviral

immune responses as a strategy for treating pandemic

influenza may paradoxically promote the development of

secondary bacterial infections.

Finally, dysregulated inflammation is an integral contrib-

utor to the pathogenesis of co-infections. On the one hand,

an overly robust inflammatory response is believed to

underlie the lung injury of highly pathogenic influenza

viruses as well as influenza–bacterial co-infections.86–91 On

the other hand, an imbalance of anti-inflammatory media-

tors may increase host susceptibility to secondary bacterial

pneumonia. Interleukin-10 is an anti-inflammatory immune

molecule that is critical for regulating excess pulmonary

inflammation during influenza;92however, elevated IL-10

levels are detrimental to bacterial clearance during secondary

bacterial pneumonias.93,94

Collectively, these studies illustrate the considerable com-

plexity in understanding the pathogenesis of polymicrobial

infections, which has hampered the development of therapies

aimed at restoring antibacterial defense following influenza

infections. At present, immunomodulatory therapies aimed

at reducing the risk of secondary bacterial infections are

largely at the pre-clinical stage of development. However,

based upon our current knowledge, a balance must be struck

between maintaining adequate antiviral immunity without

compromising antibacterial responses, while ensuring that

excess inflammation does not lead to lung injury.

Management of patients with viral–
bacterial co-infections

VaccinationReducing the burden of disease from viral–
bacterial co-infections starts with an effective vaccination

program. Currently, effective vaccines exist for H. influenzae

type b, S. pneumoniae, and influenza, but efforts to develop a

vaccine against S. aureus have been unsuccessful so far. In

addition, there are presently no vaccines for group A

streptococcal species, RSV, or many other acute respiratory

viruses. Furthermore, vaccination rates remain suboptimal in

large parts of the world. By 2011, the H. influenzae type b

(Hib3) vaccine had been introduced in 177 countries (91%);

however, vaccine coverage varied widely by region, ranging

from 11% in South-East Asia to 90% in the Americas.95 The

pneumococcal vaccine had been introduced in only 72

countries (37%) as of 2011, with ongoing efforts by the

World Health Organization (WHO) and the Global Alliance

for Vaccines and Immunization to expand vaccine availabil-

ity globally. Presently, the countries that carry the largest

burden of bacterial pneumonia have the lowest vaccination

rates and therefore are at greatest risk of secondary pneu-

monias during influenza pandemics.

There are presently two types of vaccines for S. pneumo-

niae–the polyvalent conjugate vaccine (PCV13), which is

directed against 13 serotypes and recommended in children

(ages 2 years to 59 months), and the polysaccharide vaccine

(PPSV23) based on the 23 most common capsular serotypes

and recommended in adults 65 years and older, as well as

individuals between 2 and 64 years old with risk factors for

pneumococcal disease. Both have been shown to be effective

at reducing invasive pneumococcal disease caused by the

vaccine strains (e.g., bacteremia), although disease caused by

non-vaccine strains is becoming more common. Interest-

ingly, cohort and case–control studies in the United States

and elsewhere have reported that pneumococcal vaccination

Deng
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reduces hospitalization with confirmed respiratory viral

infections, including influenza and human metapneumo-

virus, suggesting that pneumococcal infections are a signif-

icant cofactor in acute respiratory viral infections.96–99

Influenza vaccination is recommended annually for every-

one over 6 months of age. Observational studies suggest that

influenza vaccines reduce hospitalization rates for pneumo-

nia and influenza in the elderly and otitis media in

children.100–105 However, more definitive evidence that

influenza vaccines reduce complications such as bacterial

co-infections will be difficult to come by, as randomized

trials comparing vaccination to placebo group might be

viewed as unethical.

Diagnostic testing
Distinguishing viral from bacterial pneumonia can be

difficult, even with ample resources. Influenza and other

respiratory viruses can cause lower respiratory tract disease.

For example, a retrospective analysis of CT scan findings in

patients with LRTIs demonstrated considerable overlap in

findings between those of viral and bacterial origins.106

However, diffuse airspace disease was commonly associated

with bacterial infection, whereas viral infections tended to

have a more airway-centric pattern of involvement, such as

“tree-in-bud” findings. Although productive cough, fever,

and chills are classical findings in bacterial pneumonia, they

are often present in patients with influenza and other

respiratory viral infections, and certainly would not enable

the clinician to determine whether someone had viral–
bacterial co-infections. Rapid microbe-based point-of-care

tests such as the rapid influenza antigen tests are limited due

to their relatively low sensitivity. Hence, much attention has

been turned toward finding biomarkers specific for bacterial

infections. Not only are such tests important at the

individual patient level, but also from a global health

perspective, as the information can aid clinicians in decreas-

ing unnecessary antibiotic use, thereby reducing the risk of

antibiotic resistance.

Two biomarkers that have received much attention are

C-reactive protein (CRP) and procalcitonin (PCT).107,108

Both can be detected in the blood, making them more

attractive than other biomarkers that are mainly elevated in

bronchoalveolar lavage fluid, such as soluble triggering

receptor on myeloid cells (sTREM).109,110 In general, levels

of CRP and PCT tend to be higher in patients with bacterial

infections, compared with viral infections, which may aid

clinicians in determining whether patients have a bacterial

superinfection during influenza season.111 Randomized trials

suggest that CRP or PCT-guided management can result in

reduced antibiotic usage,112–118 which may aid in prioritizing

patients for treatment when antibiotics are in short supply.

However, no single test can completely distinguish bacterial

infections from other infectious causes of pneumonia, as

there is considerable overlap in levels between of patients

with and without bacterial disease.119 Furthermore, the

overlap in PCT or CRP levels between viral and bacterial

infections is more pronounced in malaria-endemic areas,

further limiting the ability of these biomarkers to distinguish

one type of infection from another.120 The clinical utility of

biomarkers continues to be investigated.

Treatment
Various respiratory and infectious disease societies from

around the world have issued guidelines for treatment of

LRTIs, including community-acquired pneumonia

(CAP).121–130 Treatment of LRTIs caused by viral–bacterial
co-infections is governed by regional epidemiologic patterns

of respiratory viruses and bacteria. S. pneumoniae and

H. influenzae are the most prevalent causes of community-

acquired pneumonia worldwide, the latter occurring primar-

ily in developing countries where the Hib vaccine is not

widely available. Atypical pathogens, such as Chlamydia

pneumoniae, Mycoplasma pneumoniae, and Legionella pneu-

mophila, are collectively considered to be common causes of

LRTIs from epidemiologic studies carried out in Europe and

other developed countries, but the exact incidence is difficult

to determine in areas of limited healthcare resources due to

the need for special laboratory testing.131–133 Specific treat-

ment regimens recommended by the guidelines often reflect

local antibiotic resistance patterns, so guidelines that are

suitable for one region–or even a country within that region

– may be inappropriate for another. For example, the United

States and parts of Europe have rates of penicillin-non-

susceptible (i.e., resistant or intermediate susceptibility)

S. pneumoniae that exceed 20%, whereas Sweden and other

northern European countries have non-susceptibility rates of

<5%.134,135 Hence, penicillin can be used as first-line

monotherapy in the treatment of CAP in Sweden,130 while

a fluoroquinolone or beta-lactam in combination with a

macrolide is recommended in the U.S. pneumonia guidelines

for hospitalized adults.124

In addition to microbiologic considerations, antibiotic

treatment decisions are based upon severity of presentation

(i.e., risk of death). Commonly used scoring systems for

assessing risk level of CAP are the CURB-65 (Confusion,

Urea, Respiratory Rate, Blood Pressure, and Age>65) and the

more complicated pneumonia severity index (PSI), which

include patient characteristics (e.g., age, comorbidities),

symptoms and signs (e.g., altered mental status, tachypnea),

and laboratory findings.136 Most guidelines for treatment of

CAP use these or similar measures to divide patients with

CAP into 3 levels of severity (e.g., low, moderate, or high

severity; patients who can be managed in the outpatient,

hospital ward, or ICU settings).

If concomitant influenza infection is not suspected,

children with mild-to-moderate CAP who are otherwise
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healthy can be treated with amoxicillin, as S. pneumoniae is

the most common pathogen or a macrolide antibiotic if

atypical bacterial pathogens are suspected. IV ampicillin or

3rd generation cephalosporin is recommended for children

with suspected pneumococcal pneumonia who are sick

enough to be admitted. This regimen will also cover

H. influenzae, although the latter is necessary if blactamase-

positive strains are present. Combination therapy with a

macrolide is indicated if atypical pathogens are suspected in

hospitalized children.127

During influenza epidemics and pandemics, S. aureus and

S. pyogenes are additional causes of CAP. Although S. pyog-

enes will be covered by the standard antibiotic regimens for

CAP, if influenza is known to be circulating in the community,

strong consideration should be made for additional S. aureus

coverage, particularly in patients who are sick enough to

require admission to the intensive care unit, presence of

necrotizing/cavitary lesions, or with risk factors for a compli-

cated course (e.g., elderly, comorbidities). Some of the

guidelines have made specific recommendations for treating

secondary bacterial pneumonias following influenza, given

that the frequency of infection by certain bacteria, particularly

S. aureus, increases in this setting.124,125,130,137 During influ-

enza season, in adult patients admitted with CAP, the

combination of a beta-lactam antibiotic with fluoroquinolone

or macrolide should be sufficient for not only for the common

CAP pathogens (e.g., S. pneumoniae, H. influenzae, atypical

bacteria), but also cover MSSA and S. pyogenes. However, if

MRSA is of concern, vancomycin or linezolid should be

started empirically, with the intent to discontinue these

antibiotics if culture results return negative.124 In children,

clindamycin is another alternative for MRSA.127

Patients who have symptoms of upper respiratory infec-

tion or who do not have evidence of LRTI on chest x-ray

(CXR) may be treated symptomatically, with instructions to

return if symptoms worsen.

Role of antiviral therapies
Many of the guidelines emphasize that influenza and other

respiratory viruses are frequent causes of LRTIs, particularly

among children under age 5.127 Given the difficulty in

distinguishing LRTIs caused by viral, bacterial, or mixed

infections, antiviral therapy should be initiated as soon as

possible in patients presenting with influenza-like illness or

LRTIs during influenza season, prior to receiving confirma-

tory test results.127 Currently, the two main classes of

influenza antiviral drugs are the adamantines, which include

amantadine and rimantadine, and neuraminidase inhibitors,

of which oseltamivir and zanamivir are the only agents that

are more widely available. The widespread of adamantine-

resistant influenza strains, including the 2009 H1N1 pan-

demic influenza, has severely limited the utility of this group

of antivirals.138,139 For patients with milder cases of influ-

enza-like illness and who are otherwise healthy, treatment

with oseltamivir or zanamivir is recommended only if started

within 48 hours of symptom onset as it can shorten duration

of symptoms. In patients admitted to the hospital, however,

antiviral treatment with oseltamivir beyond 48 hours after

symptom onset may still be beneficial.140 Newer neuramin-

idase inhibitors are presently in development or undergoing

clinical trials. Peramivir, which is administered intrave-

nously, was made available in the United States during the

2009 H1N1 influenza pandemic under an emergency use

authorization. Although it is in phase III trials in the United

States, it is approved for use in Japan and Korea.

In theory, treatment with neuraminidase inhibitors might

confer some degree of protection against secondary bacterial

infections. Studies from animal models suggest that influenza

neuraminidase activity contributes to the development of

bacterial pneumonia and that neuraminidase inhibitors

reduce the susceptibility of influenza-infected animals to

secondary bacterial pneumonias.27,141 In patients presenting

with influenza-like symptoms when influenza is known to be

circulating, early treatment with neuraminidase inhibitors

(NAI) may prevent lower respiratory tract complications of

influenza, although the microbiologic data are not defini-

tive.142 Clinical trials of NAIs (zanamivir and oseltamivir)

suggested that patients with influenza who were treated with

NAIs had decreased use of antibiotics for infectious compli-

cations, but mainly for bronchitis.143–147 In children with

influenza infection, oseltamivir treatment reduced the num-

ber of prescriptions for antibiotics.148 Observational studies

indicate that timely oseltamivir treatment can reduce the

likelihood of pneumonia development.149,150 Although

shown in animal models of sequential infection,141 it is

unclear the degree to which NAIs decrease risk of bacterial

pneumonias in influenza-infected humans.

Corticosteroids
Excessive inflammation is believed to contribute to the

severity of viral–bacterial co-infections. Hence, interest has

arisen in determining whether steroids can mitigate the

severity of lung injury from influenza infections. Data from

the 2009 H1N1 pandemic on the use of corticosteroids for

the treatment of ARDS failed to show any benefit, and

perhaps worsened outcomes, including death and infectious

complications.151,152 At present, corticosteroids are not

recommended routinely for post-influenza–bacterial pneu-
monia although studies are underway to determine their

clinical utility in patients with severe bacterial pneumonia.

Concluding remarks

Considerable advances in medical care have occurred over

the past century, markedly diminishing the odds of another

1918 influenza pandemic, when bacterial co-infections
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appeared to be the predominant cause of death. Vaccina-

tions, antibiotics, and improvements in diagnosis and

supportive care all have contributed to improved outcomes

from viral–bacterial co-infections. Nonetheless, influenza

and pneumonias remain the leading cause of death from

infectious disease worldwide, with bacterial pneumonias still

contributing to a substantial proportion of deaths during

seasonal and pandemic influenza outbreaks. During influ-

enza season, patients presenting with severe LRTIs should be

treated empirically with both antiviral and antibacterial

agents while awaiting results of microbiologic testing since

distinguishing between single and polymicrobial infections

can be problematic. An improved understanding of the

pathogenetic mechanisms responsible for viral–bacterial co-
infections will enable clinicians and public health officials to

identify which patients are at risk of developing this

potentially fatal complication, and aid in the development

of therapeutic approaches aimed at mitigating the severity of

co-infections.
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